Big-O Algorithm Complexity Cheat Sheet Created Date: 8/24/2016 10:43:56 AM. Time complexity Cheat Sheet. Mac os x for unix. BigO Graph.Correction:- Best time complexity for TIM SORT is O(nlogn). The Azure Machine Learning Algorithm Cheat Sheet helps you choose the right algorithm from the designer for a predictive analytics model. Azure Machine Learning has a large library of algorithms from the classification, recommender systems, clustering, anomaly detection, regression, and text analytics families. The worst-case complexity of an algorithm is the maximum operations algorithm would do for a given input size of n. A big-o notation is a way to represent the growth of a function. In simple words, if I say algorithm run in O(g(n)), then for sufficiently big n, the running time of the algorithm is less than g(n) multiplied by some constant.
Common Data Structure Operations
Data Structure | Time Complexity | Space Complexity | |||||||
---|---|---|---|---|---|---|---|---|---|
Average | Worst | Worst | |||||||
Access | Search | Insertion | Deletion | Access | Search | Insertion | Deletion | ||
Array | Θ(1) | Θ(n) | Θ(n) | Θ(n) | O(1) | O(n) | O(n) | O(n) | O(n) |
Stack | Θ(n) | Θ(n) | Θ(1) | Θ(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Queue | Θ(n) | Θ(n) | Θ(1) | Θ(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Singly-Linked List | Θ(n) | Θ(n) | Θ(1) | Θ(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Doubly-Linked List | Θ(n) | Θ(n) | Θ(1) | Θ(1) | O(n) | O(n) | O(1) | O(1) | O(n) |
Skip List | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n log(n)) |
Hash Table | N/A | Θ(1) | Θ(1) | Θ(1) | N/A | O(n) | O(n) | O(n) | O(n) |
Binary Search Tree | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n) |
Cartesian Tree | N/A | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | N/A | O(n) | O(n) | O(n) | O(n) |
B-Tree | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Red-Black Tree | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
Splay Tree | N/A | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | N/A | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
AVL Tree | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n) |
KD Tree | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | Θ(log(n)) | O(n) | O(n) | O(n) | O(n) | O(n) |
Array Sorting Algorithms
Algorithm Complexity Cheat Sheet Example
Algorithm | Time Complexity | Space Complexity | ||
---|---|---|---|---|
Best | Average | Worst | Worst | |
Quicksort | Ω(n log(n)) | Θ(n log(n)) | O(n^2) | O(log(n)) |
Mergesort | Ω(n log(n)) | Θ(n log(n)) | O(n log(n)) | O(n) |
Timsort | Ω(n) | Θ(n log(n)) | O(n log(n)) | O(n) |
Heapsort | Ω(n log(n)) | Θ(n log(n)) | O(n log(n)) | O(1) |
Bubble Sort | Ω(n) | Θ(n^2) | O(n^2) | O(1) |
Insertion Sort | Ω(n) | Θ(n^2) | O(n^2) | O(1) |
Selection Sort | Ω(n^2) | Θ(n^2) | O(n^2) | O(1) |
Tree Sort | Ω(n log(n)) | Θ(n log(n)) | O(n^2) | O(n) |
Shell Sort | Ω(n log(n)) | Θ(n(log(n))^2) | O(n(log(n))^2) | O(1) |
Bucket Sort | Ω(n+k) | Θ(n+k) | O(n^2) | O(n) |
Radix Sort | Ω(nk) | Θ(nk) | O(nk) | O(n+k) |
Counting Sort | Ω(n+k) | Θ(n+k) | O(n+k) | O(k) |
Cubesort | Ω(n) | Θ(n log(n)) | O(n log(n)) | O(n) |
Comments are closed.